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Introduction

Game theory models competitive situations where there are two or more decision

makers, each with a well-defined set of decision choices, his strategies. The decision

makers are called players. In noncooperative game theory, the players each act in

their own best interest. Each player has a hierarchy of preferences for outcomes that

is usually expressed as a utility/payoff function. Players are typically assumed to be

rational, meaning that each player wishes to do the best for himself, assuming others

behave the same. Game theory seeks to determine the best strategy.

In economics, for example, when a small group of firms are the only firms in a

market, they form a game called an oligopoly. The firms must decide either at what

price to sell their object, or in what quantity to produce it, in order to maximize their

profits. As early as 1838, Augustin Cournot developed the special case of a duopoly, an

oligopoly with only two firms [7]. The Cournot duopoly model, applicable when firms

produce identical products, has the selling price of a product determined by demand,

and the two firms each try to maximize their profits by adjusting the quantity they

produce. If, however, the firms are producing differentiated products, such as Coke

and Pepsi, the Bertrand model, developed by Joseph Bertrand in 1883 as a response

to Cournot, applies, and the firms set their prices with demand then determining the

quantity produced.

From the game theoretic standpoint, both of these models fall under the category

of noncooperative, continuous games. They are first considered games because play-
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ers (firms) have decision choices to make (quantity/price), and they are interested

in choosing a strategy that would optimize outcomes for themselves based on their

personal hierarchy of preferences (more money is better). Their actions are nonco-

operative because the firms seek their own profit maximizing strategies over what

would be good for the group as a whole. At each iteration of time, the firms get to

choose their price or quantity. Finally, these games are classified continuous as their

strategies come from a continuum of choices.

Regardless of which type of game we discuss, the heart of game theory strives

to find an equilibrium–a set of strategies for each player such that no other strategy

gives a higher payoff given the decision choices of the other players. Between 1950 and

1953, John Nash produced works defining the Nash Equilibrium concept. Formally, if

we are given a set of n players, each with a finite set of pure strategies to choose from,

then an ordered n-tuple (x1, . . . , xn) is a strategy profile, where each player i has the

strategy xi. The strategy profile (x1, . . . , xn) is then a Nash equilibrium if for each

player i, no strategy other than xi would yield a higher payoff given the others. In

his seminal work, Nash showed that every game when played only once (rather than

repeated through time) has at least one Nash equilibrium if one allows probabilistic

play.

This naturally leads to questions surrounding what happens to the Nash equilibria

as the game is played repeatedly, or continuously, through time. In order to begin

studying this, we consider a large population of players each programmed to a strat-

egy. At a given instance, two players are drawn at random from the population to
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play against each other. This approach, known as “evolutionary game theory” takes

two major routes: examining effects of mutations and examing a selection mechanism.

Examining the criterion of evolutionary stability involves a population’s reaction to

mutations, while the replicator dynamics instead regards how the population selects

favorable strategies.

To examine evolutionarily stable strategies (ESS), consider that each member of

the large population is programmed to play a particular strategy, with the bulk of the

population playing the exact same strategy repeatedly. One can then evaluate which

strategies are evolutionarily stable by mutating a small percentage of the population

to play a different strategy, and seeing how the main population performs. A strategy

is ESS if it performs better than the mutated fraction, presuming the mutated fraction

is not too large. These strategies form a subset of the Nash equilibria.

The other approach to evolutionary game theory examines the selection mech-

anism via the replicator dynamics. An initial mix of the population is given with

portions of players programmed to play different pure strategies. In the traditional

development, players may only choose from a finite set of pure decision choices. Fa-

vorable strategies are those that perform better than the group as a whole is faring.

The replicator dynamics selects favorable strategies by breeding more players playing

those strategies; players playing underperforming strategies die off.

There are, however, many models whose games involve infinitely many (perhaps a

continuum of) pure strategy choices. For instance, if we adopt Bertrand’s model for a



4

duopoly, we are then looking at two firms that can choose the price at which they sell

their good with quantity determined by demand. The firms have an infinite, rather

than discrete, number of choices for the price of their good. In order to discuss the

actions of these firms in the long run, it becomes necessary to discuss the replicator

dynamics for these games in terms of the continuum. Extension of the replicator

dynamics to the continuum is straightforward.

Most of those extending the replicator dynamics to a continuum of pure decision

choices examine the stability of an ESS under the replicator dynamics. When strate-

gies are taken from a finite set, an ESS is asymptotically stable under the replicator

dynamics. However, in [6] Oechssler and Riedel have shown that when there are

infinitely many pure strategies, an ESS may not remain stable. Even requiring the

space from where the strategies are taken to be compact and the payoff functions to

be continuous is not enough to guarantee the stability of a strict Nash equilibrium.

Eshel et al. in [1] demonstrate that the concept of Continuously Stable Strategies

(CSS) is sufficient to ensure long term convergence of that strategy. A CSS is an

ESS, where if the population as a whole deviates some sufficiently small amount

from the ESS, then it is the mutations closer to the ESS which survive. Eshel and

Sansone argue in [2] that when considering the extension of pure decision choices

to the continuum, one needs to take into consideration the topology over which you

measure the population. They introduce the concept of a Continuously Replicator

Stable Strategy (CRSS), and show that this is necessary and sufficient for asymptotic

stability of the replicator dynamics in the weak topology. Under the maximal shift
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topology, however, CRSS is only an almost sufficient condition for stability under the

replicator dynamics. This condition, along with CSS, are implied by the criterion of

Evolutionary Robustness (ER).

Using density functions to describe the population, Langlois has examined the

same problem of long term stability under the replicator dynamics with pure strategies

taken from the continuum [5]. Langlois has shown that, given an initial density

function describing the population with a game concave in its decision choices, the

solution of the replicator dynamics is a density that approaches a Dirac mass as time

approaches infinity. Furthermore, under assumptions that imply the existence of a

unique symmetric Nash equilibrium that is interior, he has demonstrated that the

solution to the replicator dynamics approaches the Dirac delta mass at the Nash

equilibrium, δN (as time approaches infinity) [5].

In this paper, we extend Langlois’ approach to the replicator dynamics of the

two-population game where players with different payoff structures play against each

other. We consider the concave linear quadratic case, which is the case that models

the Cournot and Bertrand duopolies as described above. We determine the necessary

conditions for the replicator dynamics for each population to converge in the long run

to the interior Nash equilibrium. Additionally, we see under which conditions we can

guarantee an unstable Nash equilibrium. The results are then numerically verified in

the final section.



The Replicator Dynamics

We are given an initial mix of the population, with a certain percentage of the

population each playing a different strategy. The classic development only allows the

players to choose from the same finite set {x1, . . . , xk} of pure decision choices, and

a population state µ = (µ1, . . . , µk) would be defined where each µi is the share of

the population playing xi. If we let P ∗(xi, µ) =
∑k

j=1 P (xi, xj)µj be the payoff for

playing xi against the population µ where P is the payoff against a single player,

then the average population payoff, also known as the “population fitness”, would be

F (µ) =
∑k

i=1 µiP
∗(xi, µ).

We now let N(t) be the number of players in the population, and we let ni(t)

denote the number of players playing strategy xi. Then we have ni(t) = µi(t)N(t).

We can now impose a reproductive structure on the number of people playing xi by

letting P ∗(xi, µ) be the number of players “born” programmed to play xi from each

individual already playing xi. If we let β ≥ 0 and δ ≥ 0 be the ambient birth and

death rates, respectively, we then have the following population dynamics:

dni(t)

dt
= (β + P ∗(xi, µ) − δ)ni(t).

Differentiating the identity N(t)µi(t) = ni(t) yields:

N(t)
dµi(t)

dt
=
dni(t)

dt
−
dN(t)

dt
µi(t).

6
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This can be simplified to yield the replicator dynamics:

dµi
dt

= [P ∗(xi, µ) − F (µ)]µi

[10]. As desired, strategies that perform better than the average population breed

more players playing that strategy, whereas strategies that perform worse die off.

Extension of the replicator dynamics to the continuum is straightforward. We take

µ to be a density function µ(x) where
∫ b

a
µ(x)dx is the probability that a random

player plays x in [a, b] with payoff P (x, y) against player y. We can now consider

the payoff, P ∗(x|µ) =
∫ 1

0
P (x, y)µ(y)dy, to the player playing x against the rest

of the population µ and the average population performance, or population fitness,

F (µ) =
∫ 1

0
P ∗(x|µ)µ(x)dx.

At this point, the extension of the replicator dynamics to the continuum is appar-

ent, yielding the differential equation

dµt(x)

dt
= µt(x) (P ∗(x|µt) − F (µt)) .

If the payoff for playing x is greater than the average population performance, µt(x)

will increase with time, meaning that more players will choose to play x. Similarly, if

x performs worse than the average population, µt(x) will decrease. If we are given an

initial funtion µ0(x) ∈ D (defined in Extending Existing Results) for our population

at time t = 0, then µt ∈ D as well, and this equation for µ′
t(x) has a unique solution
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and can be implicitly solved for µt(x) to get

µt(x) = µ0(x)e
R t

0
(P ∗(x|µτ )−F (µτ ))dτ ,

which is defined for all t since P ∗ and F are continuous and bounded.



The Two-Population Model

We wish to evaluate what becomes of a two player game with players chosen

from different populations whose pure strategy choices may be picked from [0, 1] but

whose payoff structures may differ. We consider two populations, one described by

the density function µ and the other by the density function λ. The payoff for a player

from the µ population playing pure strategy x against a single player playing y from

the λ population is P (x, y), and the payoff when playing x against the λ population

is P ∗(x|λ). Similarly, Q(x, y) will be the payoff for a player from the λ population,

playing y, against a player playing x, and Q∗(y|µ) will denote the payoff of playing

y against the µ population. Given P (x, y), we can consider P ∗(x|λt) as the expected

payoff for playing x. We then have

P ∗(x|λt) =

∫ 1

0

P (x, y)λt(y)dy,

and we similarly have

Q∗(y|µt) =

∫ 1

0

Q(x, y)µt(x)dx.

The fitness of the population µt is a measure of how the population is performing and

is given by

F (µt|λt) =

∫ 1

0

P ∗(x|λt)µt(x)dx,

9
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and the fitness of the population λt is

G(λt|µt) =

∫ 1

0

Q∗(y|µt)λt(y)dy.

From these equations, we generalize the replicator dynamics to the two-population

case with the system of differential equations given by

∂µt(x)

∂t
= µt(x)(P

∗(x|λt) − F (µt|λt))

and

∂λt(y)

∂t
= λt(y)(Q

∗(y|µt) −G(λt|µt)).

Given initial densities µ0 and λ0, this system can be solved implicitly to yield

µt(x) = µ0(x)e
R t

0
(P ∗(x|λτ )−F (µτ |λτ ))dτ (1)

and

λt(y) = λ0(y)e
R t

0
(Q∗(y|µτ )−G(λτ |µτ ))dτ .

The solution for µt is valid for all t ≥ 0 since P ∗(x|λτ ) − F (µτ |λτ) is continuous in

τ and bounded for all x, λτ , and µτ . Similarly, our solution for λt is defined for all

t ≥ 0.



Extending Existing Results

It is known in the single-population case that under the replicator dynamics with

assumptions stated in the introduction, the population density converges to the Dirac

delta mass at the unique interior Nash equilibrium [5]. We wish to generalize this

result. We proceed by first adapting the proof in order to obtain a similar concen-

tration of mass result for the two population case and to also obtain the system of

differential equations found in Theorem 1 describing the behavior of the peaks of our

populations.

We adopt the following notation from [5]: Let D = {µ ∈ C2[0, 1] : ∀x, µ(x) >

0,
∫ 1

0
µ(x)dx = 1} and I(ξ, ε) = [0, 1] ∩ [ξ − ε, ξ + ε]. We make the assumption

that both P (x, y) and Q(x, y) are concave in their respective decision maker’s vari-

able, so we insist ∂2P
∂x2 ,

∂2Q

∂y2
< 0. We also assume that ∂P

∂x

∣

∣

(0,y)
, ∂Q
∂y

∣

∣

∣

(x,0)
> 0 and

∂P
∂x

∣

∣

(1,y)
, ∂Q
∂y

∣

∣

∣

(x,1)
< 0, in order to ensure our dynamics remain in [0, 1] × [0, 1]. Addi-

tionally, we call ξ(t) a peak, meaning ξ(t) is a value of x such that µt(x) is maximum,

and similarly η(t) is a peak means η(t) is a value of y such that λt(y) is maximum.

Theorem 1 (Peak Behavior Theorem.) Under the above assumptions with µ0,

λ0 ∈ D, there exists T such that for all t ≥ T , there exists ξ(t) and η(t) where ξ(t)

and η(t) are the unique interior peaks of µt and λt respectively; moreover,

dξ(t)

dt
=

−∂P ∗

∂x
(ξ|λt)

(

∂
∂x

(

1
µ0

∂µ0

∂x

)

+
∫ t

0
∂2P ∗

∂x2 (x|λτ )dτ
)

x=ξ

(2)

11



12

dη(t)

dt
=

−∂Q∗

∂y
(η|µt)

(

∂
∂y

(

1
λ0

∂λ0

∂y

)

+
∫ t

0
∂2Q∗

∂y2
(y|µτ)dτ

)

y=η

(generalizing Lemma 6 from [5]).

We will prove this result by rephrasing each of the lemmata found in [5] leading

up to this result, and by indicating necessary adjustments to the proofs. We will

conclude this section by providing a brief synopsis deriving these equations.

Lemma 1 Assume µ0, λ0 ∈ D. Then there exists constants aµ, aλ, aµ, aλ, bµ > bµ >

0, bλ > bλ > 0, such that for all t ≥ 0,

Lµ(t) = aµ + bµt ≤ −
∂

∂x

(

1

µt

∂µt
∂x

)

≤ aµ + bµt = Mµ(t)

and

Lλ(t) = aλ + bλt ≤ −
∂

∂y

(

1

λt

∂λt
∂y

)

≤ aλ + bλt = Mλ(t).

Proof: The proof of this statement is similar to that of Lemma 1 in [5]. By

taking the implicit solution to the replicator dynamics, the same proof applies by

differentiating twice with respect to the decision maker’s variable since F and G do

not depend on x or y and since each payoff function, P and Q, is concave in the

decision maker’s variable. �

Therefore, the two corollaries from Lemma 1 in [5]. We have

lim
t→∞

Mµ

Lµ
= bµ/bµ = rµ and lim

t→∞

Mλ

Lλ
= bλ/bλ = rλ.



13

Additionally, we have lim
t→∞

∂

∂x

(

1

µt

∂µt
∂x

)

= lim
t→∞

∂

∂y

(

1

λt

∂λt
∂y

)

= −∞.

Since the proofs of the next three lemmata only depend on µ and λ being densities,

we can apply the results without altering the proofs.

Lemma 2 Let µt, λt ∈ D and suppose there exist Lµ,Mµ, Lλ,Mλ such that

Lµ ≤ −
∂

∂x

(

1

µt

∂µt
∂x

)

≤ Mµ and Lλ ≤ −
∂

∂y

(

1

λt

∂λt
∂y

)

≤Mλ.

Then for any ξ, η ∈ [0, 1], we have

µt(ξ)e
−ψ(x−ξ)−

Mµ

2
(x−ξ)2 ≤ µt(x) ≤ µt(ξ)e

−ψ(x−ξ)−
Lµ

2
(x−ξ)2

and

λt(η)e
−φ(y−η)−

Mλ
2

(y−η)2 ≤ λt(y) ≤ λt(η)e
−φ(y−η)−

Lλ
2

(y−η)2

where ψ =
(

− 1
µt

∂µt

∂x

)∣

∣

∣

x=ξ
and φ =

(

− 1
λt

∂λt

∂y

)∣

∣

∣

y=η

Lemma 3 Under the assumptions of Lemma 2, if Mµ,Mλ ≥ 2 then µt(x) ≤ (2ψ +

Mµ)e
−ψ(x−ξ)−

Lµ

2
(x−ξ)2 and λt(x) ≤ (2φ+Mλ)e

−φ(y−η)−
Lλ
2

(y−η)2 where ξ and η are peaks

of µt and λt respectively.

Lemma 4 Given δ > 0. Let ξ, η be the peaks of µ, λ respectively. Then, under

the assumptions of Lemma 2, for any 0 < ε < δ, there exists L0 such that for all

Lµ, Lλ ≥ L0 and Mµ and Mλ such that δLµ ≤ Mµ ≤ 2δLµ and δLλ ≤ Mλ ≤ 2δLλ,

we have
∫

I(ξ,ε)
µ(x)dx ≥ 1 − ε and

∫

I(η,ε)
λ(x)dx ≥ 1 − ε.
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Since we are able to use each of Lemmas 1 through 4, we obtain as a consequence

the Two-Population Mass Concentration Theorem.

Theorem 2 (Two-Population Mass Concentration Theorem.) Given the

conditions on our game, for any initial densities λ0, µ0 ∈ D and any ε > 0, there

exists T > 0 such that for all t ≥ T ,

∫

I(ξ(t),ε)

µt(x)dx ≥ 1 − ε and

∫

I(η(t),ε)

λt(x)dx ≥ 1 − ε

where ξ(t) and η(t) are the peaks of µt(x) and λt(x) respectively.

The proof for this next lemma also directly applies to the two-population case.

Lemma 5 Let α(ξ, λ) = ∂P ∗

∂x
(ξ|λ)− ∂P

∂x
(ξ, η) and β(η, µ) = ∂Q∗

∂y
(η|µ)− ∂Q

∂y
(η, ξ). Also

let A = maxx∈[0,1]

∣

∣

∣

∂2P
∂x∂y

∣

∣

∣
− maxx∈[0,1]

∣

∣

∂P
∂x

∣

∣ and B = maxx∈[0,1]

∣

∣

∣

∂2Q

∂y∂x

∣

∣

∣
− maxx∈[0,1]

∣

∣

∣

∂Q

∂y

∣

∣

∣
.

Then for any ε > 0, if Lemma 4 holds, then |α(ξ, λ)| < Aε and |β(η, µ)| < Bε.

Synopsis of Proof of The Peak Behavior Theorem: By applying the proof to

Lemma 6 in [5], one can show ∂µt(x)
∂x

= ∂λt(y)
∂y

= 0 at an interior point (x = ξ, y = η).

From (1), we obtain

lnµt(x) = lnµ0(x) +

∫ t

0

(P ∗(x|λτ ) − F (µτ |λτ ))dτ

and similarly for λt(y). Differentiating this equation yields

1

µt(x)

∂µt(x)

dx
=

1

µ0(x)

∂µ0(x)

dx
+

∫ t

0

∂(P ∗(x|λτ )

∂x
dτ
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and similarly for λt(y). Therefore, we can conclude (ξ(t), η(t)) gives a solution to the

system

1

µt(x)

∂µt(x)

dx
=

1

µ0(x)

∂µ0(x)

dx
+

∫ t

0

∂(P ∗(x|λτ )

∂x
dτ = 0

1

λt(y)

∂λt(y)

dy
=

1

λ0(y)

∂λ0(y)

dy
+

∫ t

0

∂(Q∗(y|µτ)

∂y
dτ = 0

By the Implicit Function Theorem, there exists x = ξ(t), y = η(t), satisfying the given

equations for dξ

dt
and dη

dt
. Differentiating these equations with respect to t, evaluating

at x = ξ(t), y = η(t), and solving the resulting equations for dξ

dt
and dη

dt
will produce

the desired equations. �



Two-Population Theory for Linear Quadratic Games

In terms of Bertrand’s model for a duopoly, the firms have an infinite, rather than

discrete, number of choices for the price of their good. If we let x be the price for

Firm X and y be the price for Firm Y, then a possible model for the quantity sold

by X would be q
X

= a− bx + cy where a, b, c > 0 so that the quantity sold by X is a

decreasing function of the firm’s price but an increasing function of Firm Y’s price.

The payoff to Firm X would then be πx = px · qx = x(a− bx+ cy). We now focus on

this linear-quadratic case as our methods allow us to make a successful analysis of the

long term behavior of the populations. Therefore, we take P (x, y) = x(a − bx + cy)

and Q(x, y) = y(d− ey + fx).

We would like to use the results of the Peak Behavior Theorem. In order to meet

the concavity assumption in the linear quadratic case, we must have that b, e > 0.

Furthermore, to meet the assumptions about the boundary, we must require that

∂P
∂x

∣

∣

(0,y)
> 0 and ∂P

∂x

∣

∣

(1,y)
< 0 for all y ∈ [0, 1]. Therefore we must have a + cy > 0

and a− 2b+ cy < 0 for all y ∈ [0, 1]. These lead to the assumptions that 0 < a < 2b

and 0 < a + c < 2b. Similarly, we can deduce that we must have 0 < d < 2e and

0 < d + f < 2e. This establishes the conditions our payoff functions must have in

order to use the results of the Peak Behavior Theorem to obtain stability results for

ξ and η.

We can now fill in the equations from the Peak Behavior Theorem in the linear

quadratic case by plugging in the necessary quantities. First, we note that ∂P
∂x

=

16
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a− 2bx + cy and ∂2P
∂x2 = −2b. We can now calculate ∂P ∗(ξ|λt)

∂x
:

∂P ∗(ξ|λt)

∂x
=

∂

∂x

(
∫ 1

0

P (x, y)λt(y)dy

)∣

∣

∣

∣

x=ξ

=

∫ 1

0

∂P

∂x
(x, y)λt(y)dy

∣

∣

∣

∣

x=ξ

=

∫ 1

0

(a− 2bx + cy)λt(y)dy

∣

∣

∣

∣

x=ξ

= a− 2bξ + c

∫ 1

0

yλt(y)dy.

But EY =
∫ 1

0
yλt(y)dy is the expectation of the continuous random variable, Y , with

density function λt. So we get ∂P ∗(ξ|λt)
∂x

= a−2bξ+ cEY , and similarly ∂Q∗(η|µt)
∂y

= d−

2eη+fEX where EX is the expectation of the random variable X associated with µt.

Simple calculations will also show
∫ t

0
∂2P ∗(ξ|λτ )

∂x2 dτ
∣

∣

∣

x=ξ
= −2bt and

∫ t

0
∂2Q∗(η|µτ )

∂y2
dτ
∣

∣

∣

y=η
=

−2et. We also have the quantities ∂
∂x

(

1
µ0

· ∂µ0

∂x

)∣

∣

∣

x=ξ
= Kµ(ξ), a function of ξ, and

∂
∂y

(

1
λ0

· ∂λ0

∂y

)∣

∣

∣

y=η
= Kλ(η), a function of η.

Under the conditions we imposed together with the assumption µ0, λ0 ∈ D, the

Peak Behavior Theorem implies that there exists a T such that for all t ≥ T ,

dξ(t)

dt
= −

a− 2bξ + cEY

Kµ(ξ) − 2bt

dη(t)

dt
= −

d− 2eη + fEX

Kλ(η) − 2et
(3)

where ξ(t) is the peak of µt and η(t) is the peak of λt. We now begin to show that

this system converges to a system on which we can more easily evaluate the stability
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of solutions.

Lemma 6 Given any ε > 0, there exists T1 such that for all t ≥ T1,
∣

∣

1
t
Kµ(ξ)

∣

∣ < ε.

Proof: Since µ0 ∈ D, Kµ(ξ) = ∂
∂x

(

1
µ0

· ∂µ0

∂x

)∣

∣

∣

x=ξ
is continuous on the compact

interval [0, 1], and hence there exists M ≥ 0 such that |Kµ(ξ)| ≤ M for all ξ ∈ [0, 1].

Therefore, taking T1 = M
ε
, for t ≥ T1 we have

∣

∣

1
t
Kµ(ξ)

∣

∣ ≤
∣

∣

1
t

∣

∣M < ε
M
M = ε, as

desired. �

Similarly, there exists T ′
1 such that for all t ≥ T ′

1,
∣

∣

1
t
Kλ(η)

∣

∣ < ε for any given

ε > 0.

To further simplify our equations, we look at the quantities EX and EY . Recall,

EX =
∫ 1

0
xµt(x)dx, and EY =

∫ 1

0
yλt(y)dy.

Lemma 7 Given δ > 0, there exists T2 such that for all t ≥ T2, |EX − ξ| < δ.

Proof: By the Two-Population Mass Concentration Theorem, for 0 < ε < δ
2
, there

exists T2 such that for all t ≥ T2,
∫

I(ξ,ε)
µt(x)dx ≥ 1−ε. Therefore

∫

[0,1]\I(ξ,ε)
µt(x)dx ≤

ε. But since 0 ≤ x ≤ 1, we have

∫

[0,1]\I(ξ,ε)

xµt(x)dx ≤

∫

[0,1]\I(ξ,ε)

µt(x)dx ≤ ε.

From that,
∫ 1

0

xµt(x)dx ≤

∫

I(ξ,ε)

xµt(x)dx+ ε.



19

Using this and since I(ξ, ε) ⊆ [0, 1], we have

∫

I(ξ,ε)

xµt(x)dx ≤

∫ 1

0

xµt(x)dx ≤

∫

I(ξ,ε)

xµt(x)dx + ε.

But
∫

I(ξ,ε)
xµt(x)dx ≥ (ξ−ε)

∫

I(ξ,ε)
µt(x)dx ≥ (ξ−ε)(1−ε). Also,

∫

I(ξ,ε)
xµt(x)dx+ε ≤

(ξ+ ε)
∫

I(ξ,ε)
µt(x)dx+ ε ≤ (ξ+ ε)

∫ 1

0
µt(x)dx+ ε = (ξ+ ε) · 1+ ε since

∫ 1

0
µt(x)dx = 1

as µt is a density. Therefore,

(ξ − ε)(1 − ε) ≤

∫ 1

0

xµt(x)dx ≤ (ξ + ε) + ε.

Therefore,

ε2 − ε(ξ + 1) ≤ EX − ξ ≤ 2ε.

If 0 ≤ ε2 − ε(ξ + 1), then |EX − ξ| ≤ 2ε. If 0 > ε2 − ε(ξ + 1), then

|ε2 − ε(ξ + 1)| = ε(ξ + 1) − ε2 = ε(ξ + 1 − ε) ≤ 2ε

since ξ ∈ [0, 1], and therefore, |EX − ξ| ≤ 2ε. Hence, for all t ≥ T2, |EX − ξ| ≤ 2ε <

2 δ
2

= δ. �

A similar argument works for EY as well. Therefore, we can write (3) as

dξ

dt
= −

1

t
·
a− 2bξ + c(η + φy(t))

1
t
Kµ(η) − 2b

and
dη

dt
= −

1

t
·
d− 2eη + f(ξ + φx(t))

1
t
Kλ(ξ) − 2e

. (4)

where φy(t), φx(t),
1
t
Kλ, and 1

t
Kµ converge to 0 as t approaches infinity. We will now
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make a couple changes in variable to put our equations in a form we can better deal

with.

Lemma 8 If cf 6= 4eb, a Nash equilibrium for this game is given by ξN = cd+2ea
4eb−cf

and

ηN = 2bd+af
4eb−cf

.

Proof: If ∂P
∂x

= 0, ∂Q

∂y
= 0, we have a Nash equilibrium. Solving the resulting

system of equations for ξ and η produces our desired result. �

We will place additional conditions on our coefficients to ensure that our Nash

equilibrium falls within the interval [0, 1]. We insist that 0 ≤ ηN , ξN ≤ 1.

We change variables to the Nash equilibrium by first letting ξ ′ = ξ − ξN and

η′ = η − ηN so that dξ′

dt
= dξ

dt
, dη′

dt
= dη

dt
, ξ = ξ′ + ξN , and η = η′ + ηN . This transforms

our system (3) into

dξ′

dt
=

1

t
·
2bξ′ − c(η′ + φy(t))
1
t
Kµ(η′ + ηN) − 2b

and
dη′

dt
=

1

t
·
2eη′ − f(ξ′ + φx(t))
1
t
Kλ(ξ′ + ξN) − 2e

.

We can now get rid of the 1
t

factor by changing variables to s = ln t. This change

yields the system

dξ′

ds
=

2bξ′ − c(η′ + φy(e
s))

e−sKµ(η′ + ηN ) − 2b
and

dη′

ds
=

2eη′ − f(ξ′ + φx(e
s))

e−sKλ(ξ′ + ξN) − 2e
. (5)

In order to gain some stability results on this system, we need the following lemma.

Lemma 9 Suppose dx
dt

= Ax + G(x, t) is a system of 2 equations in 2 unknowns.
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Suppose A = Q−1ΛQ, where Λ =







λ1 0

0 λ2






where λ1, λ2 have negative real parts.

Suppose also that G(x, t) converges to 0 uniformly in x as t approaches infinity, where

G is continuous and bounded for all x and t. Then x(t) = 0 is an asymptotically stable

solution of dx
dt

= Ax +G(x, t).

Proof: Let Qx = y (which may take complex values), and multiply dx
dt

= Ax +

G(x, t) by Q. We then have dy

dt
= Λy + G(Q−1y, t). Let H(y, t) = G(Q−1y, t), and

note that H may also take on complex values as Q may have complex entries. Solving

for y, we obtain y(t) = eΛ(t−t0)y0 +
∫ t

t0
eΛ(t−s)H(y(s), s)ds. Let us take a look at the

j-th entry of y(t): yj(t) = eλj(t−t0)y0j
+
∫ t

t0
eλj(t−s)hj(y(s), s)ds. We will now show

that given ε > 0 there exist T0, T such that for all t0 ≥ T0, t ≥ T , |yj(t)| < ε.

We first consider
∣

∣

∣

∫ t

t0
eλj(t−s)hj(y(s), s)ds

∣

∣

∣
. We take λj to be real, and therefore,

hj is a real-valued function. We will later show that the case when λj is complex can

be reduced to the real case. Taking λj to be real, we have eλj(t−s) > 0. By the Mean

Value Theorem for Integrals there exists z ∈ [t0, t] such that

∫ t

t0

eλj(t−s)hj(y(s), s)ds = hj(y(z), z)

∫ t

t0

eλj(t−s)ds.

But
∫ t

t0

eλj(t−s)ds = −
1

λj

(

1 − eλj(t−t0)
)

.
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Since λj < 0 (ie: −λj > 0) and t > t0, we have
∣

∣

∣
− 1
λj

(

1 − eλj(t−t0)
)

∣

∣

∣
< − 1

λj
. Therefore,

∣

∣

∣

∣

∫ t

t0

eλj(t−s)hj(y(s), s)ds

∣

∣

∣

∣

< −
1

λj
|hj(y(z), z)| .

Since G(y, t) converges to 0 uniformly in y as t approaches infinty, hj inherits this

condition. Hence, since z > t0, for any ε > 0, there exists T0 such that for all t0 ≥ T0,

|hj(y(z), z)| <
(−λj)ε

2
. Therefore, for t0 ≥ T0,

∣

∣

∣

∫ t

t0
eλj(t−s)hj(y(s), s)ds

∣

∣

∣
< − 1

λj
·

(−λj)ε

2
=

ε/2.

In the case of complex eigenvalues, λj can be written as λj = ρj + iθj, where

ρj < 0 and θj are both real. Similarly, we can write hj(y(s), s) = u(s)+ iv(s) where u

and v are both real-valued functions converging to 0 uniformly in y as s approaches

infinity. Then

∫ t

t0

eλj(t−s)hj(y(s), s)ds =

∫ t

t0

eρj(t−s)(u(s) cos(θ(t− s)) − v(s) sin(θ(t− s)))ds . . .

+i

∫ t

t0

eρj(t−s)(u(s) sin(θ(t− s)) + v(s) cos(θ(t− s)))ds.

Hence,
∣

∣

∣

∫ t

t0
eλj(t−s)hj(y(s), s)ds

∣

∣

∣
≤ 2

∣

∣

∣

∫ t

t0
eρj(t−s)(u(s) + v(s))

∣

∣

∣
, thereby reducing the

complex case to the real case.

We now consider
∣

∣eλj(t−t0)y0j

∣

∣; |y0j
| is a constant, which we will denote Cj. Since

λj has negative real part, there exists T1 such that for all t− t0 ≥ T1,
∣

∣eλj(t−t0)y0j

∣

∣ =

C
∣

∣eλj(t−t0)
∣

∣ < C · ε
2c

= ε
2
. Therefore, we have shown that for T = t0 + T1, for all
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t0 ≥ T0, and t ≥ T ,

|yj(t)| ≤ |eλj(t−t0)y0j
| +

∣

∣

∣

∣

∫ t

t0

eλj(t−s)hj(y(s), s)ds

∣

∣

∣

∣

<
ε

2
+
ε

2
= ε.

This implies the convergence of ‖y(t)‖ to 0, and therefore, the solution x(t) of dx
dt

=

Ax +G(x, t) to 0 as well. �

Before we apply this lemma to our system, let us just take a moment to recall our

other assumptions: 0 < a < 2b, 0 < a+ c < 2b, 0 < d < 2e, 0 < d+ f < 2e, cf 6= 4eb

and our Nash equilibrium must lie in [0, 1]. Consider the matrix A corresponding to

the system of equations given in (5) taken in the limit:

A =







−1 c
2b

f

2e
−1






. (6)

The eigenvalues for A are

l1, l2 =

(

−1 ±

√

cf

4be

)

.

Under our given assumptions, this yields only certain possibilities for our eigenvalues:

Lemma 10 Under the given conditions for the coefficients, the eigenvalues of A are

either both real distinct and negative, both complex with negative real parts, or both

the same nonpositive number.

Proof: To run through all the cases, we first consider the case where we have real

distinct eigenvalues. In order for our eigenvalues to be real, we must have cf

be
> 0. It
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is clear by looking at the formula for l1 and l2 that they will never both be positive.

Since be > 0, this means we must have cf > 0 too, so either c, f > 0 or c, f < 0.

It is clear from the formula for l1, l2 that l1 and l2 will both be negative if 4be > cf

or of different signs if 4be < cf . It is possible for l1 and l2 to both be negative, and

an example of this is given in the equations of Figure 1 in Section 6. Slightly less

apparent is the fact that we cannot have eigenvalues of opposite signs. We first show

that to have this case, we must have c, f > 0:

cf > 4be = (2b)(2e) > (a + c)(d+ f) = ad+ dc+ fa+ cf.

Hence, 0 > ad + dc + cf . Therefore, c, f < 0 since a, d > 0. By the bounds on our

Nash equilibrium, we know 0 < cd+ 2ea < 4eb− cf . Hence −cd < 2ea. But a < 2b,

so −cd < 2ea < 4eb. Hence −cd < cf since 4eb < cf . Therefore, −d > f since c < 0.

Hence 0 > d + f , a contradiction. Therefore, in order for the eigenvalues of A to be

real and distinct, they must be negative.

The next possiblity is for the eigenvalues to be complex conjugates. It is clear from

the formula that they will always have a real part of −1. These kinds of eigenvalues

are attainable, and examples of them can be found in the equations to Figures 2 and

3 in Section 6.

Finally, the eigenvalues may be described by the case when cf

eb
= 0, or when l1 = l2.

This case is attainable, but only occurs when c = 0 or f = 0. This case does not

qualify as a game, so we ignore this case in further discussion. �
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We now return to Lemma 9 to establish convergence of the peaks ξ and η to the

unique interior Nash equilibrium.

Theorem 3 In the two-population linear quadratic case, the conditions c, f 6= 0 and

0 ≤ ξN , ηN ≤ 1, together with conditions necessary to apply the Peak Behavior Theo-

rem are enough to imply the stability of the solutions to the equations (3), and hence,

the convergence of the peaks ξ and η to the unique interior Nash equilibrium.

Proof: Taking A as described above in equation (6), x =







ξ′

η′






, where ξ′ and η′

are as described for equation (5), and

G(x, s) =







2bξ′−c(η′+φy(es))

e−sKµ(η′+ηN )−2b

2eη′−f(ξ′+φy(es))
e−sKλ(ξ′+ξN )−2e

.






− Ax,

we seek to apply Lemma 9. G(x, s) converges to 0 uniformly in x as s approaches

infinity, and G is continuous and bounded for all x and s. Moreover, by Lemma 10, A

has distinct eigenvalues, and is hence diagonalizable. Therefore, the solution x = 0 to

the equations described in (5) is asymptotically stable Lemma 9. Therefore, we can

conclude that the solution ξ(t) = ξN , η(t) = ηN is an asymptotically stable solution

to (3). Hence, the peaks ξ and η converge to the unique interior Nash equilibrium.

�



Numerical Simulations

We now wish to observe our theoretical results by examining some simulations.

The MATLAB code evolver.m found in the appendix provides the foundation for

our numerical treatment. The code takes a payoff function P together with a second

payoff function Q and evolves uniform initial population densities under the replicator

dynamics using Euler’s method.

We first initialize the time step to 0.5, and then we discretize the continuum

of decisions into 100 pure decision choices. The population densities are set to a

uniform density. Next, the figure is configured to display multiple plots. In each plot,

the dotted line corresponds to the µ population of players with payoff function P ,

and the solid line corresponds to the λ population of players with payoff function Q.

The program then sets up the payoff structures using the payoff functions.

At this point, the program applies Euler’s method. For 10 iterations, it runs 25i

steps of time in the ith iteration, applying Euler’s method to the two population

replicator dynamics

∂µ

∂t
= µt(x)(P

∗(x|λt) − F (µt|λt)) and
∂λ

∂t
= λt(y)(Q

∗(y|µt) −G(λt|µt)),

and producing a plot after each iteration. The densities evolve using the recursive

formulas µi = µi−1 + h(P ∗(x|µi−1) − F (µi−1|λi−1)) and λi = λi−1 + h(Q∗(y|λi−1) −

G(µi|λi−1)). After each application, we ensure that our densities remain nonnegative

26
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by resetting all negative values in µ and λ to 0. Finally, since it is easier to do

calculations using the interval [1, 100] broken into integers, we normalize our density

function after every step to be in the [0, 1] interval.

We apply our code to functions meeting the criteria we discussed for both stable

and nonstable Nash equilibria. Here, as before, ξN refers to the Nash equilibrium of

the µ population, and ηN refers to the Nash equilibrium of the λ population.

We first examine the theoretically guaranteed stable cases. Two payoff functions

that will yield real distinct negative eigenvalues are P (x, y) = x(1−2x+2y), which is

given in pstable.m, andQ(x, y) = y(1−2y+x), given in qstable.m. As computed using

Lemma 8, these equations have a Nash equilibrium of appproximately ξN = 0.4286

and ηN = 0.3571. As we can see from Figure 1, both populations are converging to

support concentrated at this Nash equilibrium.

This brings us to the final guaranteed case of stability where the matrix corre-

sponding to our equations has complex eigenvalues with negative real parts. The

first example is given by ppayoff2.m, P (x, y) = x(0.5 − x − y), and qpayoff2.m,

Q(x, y) = y(0.5 − y + x). This has a Nash equilibrium of ξN = 0.1 and ηN = 0.3. A

quick check to Figure 2 shows that the respective populations are nearly centered at

their respective Nash equilibria. A second example of this case is given by pspiral2.m,

P (x, y) = x(1− 2x+ y), and qspiral2.m, Q(x, y) = y(3− 3y− 2x). This example has

a computed Nash equilibrium of ξN = 9
26

and ηN = 10
26

by Lemma 8. Refer to Figure

3 to check the example against our theoretical predictions.
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Figure 1: Evolution of P (x, y) = x(1 − 2x+ 2y) and Q(x, y) = y(1 − 2y + x)
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Figure 2: Evolution of P (x, y) = x(0.5 − x− y) and Q(x, y) = y(0.5 − y + x)
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Figure 3: Evolution of P (x, y) = x(1 − 2x+ y) and Q(x, y) = y(3 − 3y − 2x)
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Finally, when we relax the conditions on the first partial derivatives of P and Q

needed to prove the Peak Behavior Theorem, we can produce an unstable interior

Nash equilibrium. This example has symmetric payoffs and is given by punstable.m,

P (x, y) = x(1−x−3y), and qunstable.m, Q(x, y) = y(1−y−3x). Rather than evolving

toward the interior Nash equilibrium computed in Lemma 8 to be ηN = ξN = 0.2,

our densities now evolve toward a Nash equilibrium on the boundary. This can be

seen in Figure 4 as the maxizands move away from each other.
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Figure 4: Evolution of P (x, y) = x(1 − x− 3y) and Q(x, y) = y(1 − y − 3x)



Discussion

In this paper, we have examined the evolution of two-populations with linear

quadratic payoff functions under the replicator dynamics. Given payoff functions

concave in the decision maker’s variable and given boundary conditions ensuring

our dynamics remains in the interior of (0, 1) × (0, 1), in the Two-Population Mass

Concentration Theorem and the Peak Behavior rm, we have provided the natural

extension of results found in [5]. Namely, we have found that in the two-population

replicator dynamics, the populations will converge to unique peaks.

We then examined populations taking linear quadratic payoff functions, P (x, y) =

x(a − bx + cy) and Q(x, y) = y(d − ey + fx), that determine a game (ie: cf 6= 0).

Using a result that allowed us to examine the stability peak behavior in the limit, we

have been able to further extend the results in [5] to show that the populations will

converge to unique interior peaks at the Nash equilibrium.
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Matlab Code

evolver.m

% EVOLVER

%

% EVOLVER(ppayofffunction, qpayofffunction) takes p player’s

% payoff function and q player’s payoff function and applies

% the replicator dynamics to them

%

function [] = evolver(ppayofffunction, qpayofffunction)

n=100;

h=0.5;

% Initialize our population densities

% This is a uniform density

for k = 1:n,

mup(k) = 1/n; % mup = The population density of P players

muq(k) = 1/n; % muq = the population density of Q players

end

x=1:100; % x contains the x-coordinate for our graphs

figure(1);

axiswindow = [0, 100, 0, 0.2];

%subplot(3,4,1), plot(x, mup, ’b^’, x, muq, ’rv’);

subplot(3,4,1), plot(x, mup, ’b:’, x, muq, ’r’);

axis(axiswindow); % Uniform axes for the plots for comparison

title([’Initial Population Density’]);

legend(’muP’,’muQ’);

% Now we set up our payoff structures

for a=1:n,

for b=1:n,

% Ptable is the matrix that lists the payoff for a p player
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% when playing a against b. We divide by n to get our payoffs

% in the [0,1] interval.

PTable(a,b) = feval(ppayofffunction,a./n, b./n);

% Qtable is similarly a table that lists the payoff for

% a q player when playing b against a

QTable(a,b) = feval(qpayofffunction,a./n, b./n);

end

end

numberiterations = 0;

for s=1:1

figure(s);

for l=1:10, % After time passes, we create another plot.

for k=1:(25*l), % This loop passes time.

% Setting up the fitness table of a p player

for a=1:n,

% PTable(a,:) gives only the entries from row a... It is a

% row. muq is also a row. FitnessP is also a row.

FitnessP(a) = sum(PTable(a,:) .* muq);

end

% is a row vector

FtP = sum(FitnessP .* mup) * ones(1,n);

% is a row vector

FDP = FitnessP - FtP;

mup = mup .* (ones(size(FDP)) + h*FDP);

for a=1:n

if mup(a)<=0

mup(a) = 0;
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end

end

% must "normalize" mup

S = sum(mup);

mup = mup / S;

% Setting up the fitness table of a q player

for a=1:n,

% QTable(:,a) gives only the entries from column a...

% It is a column. muq is also a row. FitnessP is

% also a row.

FitnessQ(a) = sum(QTable(:,a)’ .* mup);

end

% is a row vector

FtQ = sum(FitnessQ .* muq) * ones(1,n);

% is a row vector

FDQ = FitnessQ - FtQ;

muq = muq .* (ones(size(FDQ)) + h*FDQ);

for a=1:n

if muq(a)<=0

muq(a) = 0;

end

end

% must "normalize" mup

S = sum(muq);

muq = muq / S;

end

subplot(3,4,l+1), plot(x, mup, ’b:’, x, muq, ’r’);

axis(axiswindow);
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numberiterations = k+numberiterations;

title([’After ’, int2str(numberiterations), ’ iterations’]);

end

[maximummup,xi]=max(mup);

[maximummupq,eta]=max(muq);

xi = xi/100;

eta = eta/100;

subplot(3,4,12), plot([1,1], [2,1],’o’);

axis(axiswindow);

text(25,.15, [’\xi_N = ’, num2str(xi)]);

text(25,.05, [’\eta_N = ’, num2str(eta)]);

sprintf(’After %d iterations, xi = %0.5g and eta =

%0.5g’,numberiterations,xi,eta)

end

ppayoff2.m

% [payoff] = ppayoff2(x,y).

% This is the concave payoff function P(x,y)=x .*(0.5-x-y)

function [payoff] = ppayoff2(x,y)

payoff = x .* (0.5-x-y);

pspiral2.m

% [payoff] = pspiral2(x,y).

% This is the concave payoff function P(x,y)=x .*(1-2x+y)

function [payoff] = pspiral2(x,y)

payoff = x .* (1-2*x+y);
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pstable.m

% [payoff] = pstable(x,y).

% This is the concave payoff function P(x,y)=x .*(1-2x+2y)

function [payoff] = pstable(x,y)

payoff = x .* (1-2*x+2*y);

punstable.m

% [payoff] = punstable(x,y).

% This is the concave payoff function P(x,y)=x .*(1-x-3y)

function [payoff] = punstable(x,y)

payoff = x .* (1-x-3*y);

qpayoff2.m

% [payoff] = qpayoff2(x,y).

% This is the concave payoff function Q(x,y)=y .*(0.5+x-y)

function [payoff] = qpayoff2(x,y)

payoff = y .* (0.5+x-y);

qspiral2.m

% [payoff] = qspiral2(x,y).

% This is the concave payoff function Q(x,y)=y .*(3-3y-2x)

function [payoff] = qspiral2(x,y)

payoff = y .* (3-3*y-2*x);

qstable.m

% [payoff] = qstable(x,y).

% This is the concave payoff function Q(x,y)=y .*(1-2y+1x)

function [payoff] = qstable(x,y)

payoff = y .* (1-2*y+x);
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qunstable.m

% [payoff] = qunstable(x,y).

% This is the concave payoff function Q(x,y)=y .*(1-y-3*x)

function [payoff] = qunstable(x,y)

payoff = y .* (1-y-3*x);


